八字模型是什么原因(八字模型讲解)

相见陌路 2023-09-28 06:37:09 网友投稿

神奇的模型数学(21)---万能的“八字形”

神奇的模型数学(21)---万能的“八字形”

问题提出:

如图,在3×3的正方形网格中标出了∠1和∠2.则∠1+∠2=___.

首先让我们来看一个大家再熟悉不过的题:

如图,已知五角星ABCDE,试求∠A+∠B+∠C+∠D+∠E的度数。

∵∠ENM是△ACN的外角,

∴∠ENM=∠A+∠C,(三角形的外角等于不相邻的两个内角的和)

同理可得,∠EMN=∠B+∠D.

∵∠MNE+∠NME+∠E=180°,

∴∠A+∠B+∠C+∠D+∠E=180°

在n年前我的老师是这样教我们的,若干年后正能良传承了老师的衣钵,我也一直是这样教自己的学生.想必大家与我一样认为这就是唯一的解法.这的确是一种好的数学方法,运用了转化的数学思想,把要求的\"五角星”的五个角的和集中到一个三角形中.也许就是因为这种解法太过完美了,一直把我们的思维禁锢其中,以致于一丁点都没有去思考过有没有更巧妙的方法.一次正能良在做类似的题的时候突然眼前一亮,发现了一个对于解决角度和的问题万能的数学模型---\"八字形\".

数学模型:

内涵:∠A+∠B=∠C+∠D.

事实上,根据三角形的外角等于不相邻的两个内角的和可得,∠A+∠B=∠1,∠C+∠D=∠1,所以有∠A+∠B=∠C+∠D.

下面我们用万能的“八字形”来解决五角星问题:

解:如图,连接CD,

∵∠B+∠E=∠1+∠2,

∴∠A+∠B+∠C+∠D+∠E

=∠A+∠1+∠ACE+∠2+∠ADB

=∠A+∠ACD+∠ADC

=180°.

问题解决:

如图,在3×3的正方形网格中标出了∠1和∠2.则∠1+∠2=___.

解:连AE,BE,

∵AE∥CD,

∴∠2=∠3.

易知,△ABE为等腰直角三角形,∠AEB=90°,

又∠ACB=90°,

由“八字形”数学模型知,∠3=∠4

∴∠2=∠4.

∴∠1+∠2=∠1+∠4=∠ABE=45°

巩固练习:

1.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=( ).

A. 540° B. 720° C. 360° D. 900°

2.如图,已知∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F= .

3.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I的度数.

敬请关注:正能良60038993.

2023年中考数学一轮复习学案第01讲:实数@初中数学模型壹盘清

附:《初中数学解题模型壹盘清》直通车

●老李原创作品《初中数学解题模型壹盘清》10部思维导图课件及680集配套视频课程目录及作品展示(点链接<下划线的蓝色文字标题>直接浏览、观看)——欢迎品鉴。

■作品介绍:思维导图课件是什么?有什么?能做什么?适合哪些人用(点下列“标题”直接浏览两篇文章)

①10部课件目录、创作意图、课件展示、用户评价、适用范围

②中考黑科技:中考数学应知必会的120解题模型图谱(课件)品鉴

③《初中数学解题模型壹盘清》教师、家长、学生用户评价及反馈意见

■免费视频:《初中数学解题模型壹盘清》完整视频免费看(点下列“标题”直接看10集配套视频)——没有假噱头,只有真福利。

①玩大招,有绝招,亮奇招:旋转模型和一线三等角模型相同的处理策略(破冰之剑第84集)

②等角套来套等角,顺藤摸瓜找全等,取特殊点可秒杀,巧用对垂四边形(点睛之剑第11集)

③轨迹为圆也瓜豆,先定圆心后半径,点圆最值凑热闹,一转成双手拉手(点睛之剑第17集)

④瓜豆原理打头阵,旋转相似是根本,加权最值阿氏圆,子母相似破难点(点睛之剑第18集)

⑤一题讲透旋转手拉手模型与一线直三等角、八字倒角及旋转角模型(破冰之剑第92集)

⑥等边邂逅勾股数,旋转定角一百五,定边定角有隐圆,确定圆心是关键(点睛之剑第5集)

⑦旋转模型打头阵,全等歪八证垂等,线圆最值来定高,面积最值可秒杀(点睛之剑第6集)

⑧一转成双打头阵,缩放相似和全等,又见一线三直角,旋转倒角用勾股(点睛之剑第7集)

⑨等角套来套等角,顺藤摸瓜找全等,共点等腰手拉手,突破难点反证法(点睛之剑第9集)

⑩类比推理大背景,瓜豆原理贯始终,抓住本质最重要,模型导航把路引(点睛之剑第20集)

■附:⑩点睛之剑20题的完整课件截图(课件&视频:一学就会、一看就懂)

●乾坤未定,你我皆是黑马 ——学生备考、教师提升、家长陪辅;高效慧学、智助培优。

●为所爱,尽所能,初中数学解题模型壹盘清;

●学有道,行天下,行有恒,天不负;

●世界上最大的遗憾不是我不行,而是我本可以;

三角形中的十大模型及解析(五):八字型模型

嗨!友友们好!今天咱们一起学习《三角形》中的十大模型(五):八字型模型。八字型模型考查了三角形内角和定理,三角形的外角和定理及其推论。

口诀:相对两角之和相等。下面我们来看第(1)题,通过推理论证我们得出了以上结论。此题考查了三角形内角和定理,八字型的性质和应用。

如果你还不懂,请看2022.8.24号视频。

先做后对答案效果好哦!

再来看看第二题,它的前两问和第一题类似,第三问拓展了,考查了八字型模型的性质,三角形内角和定理,角平分线性质等等。开拓了思维视野,提高了创新能力。

先做后对答案效果好哦!

第一小题是证明八字型模型,第一题已经讲过,略。

第三题是八字型模型的拓展应用。第一问的难点在于书写理由。第二问简单,利用四边形内角和,八字型模型即可得出360°。第三问考查了全等三角形的性质与判定。

第二问略,360°。

你学会了吗?关注老师不迷路,别忘了点赞评论哟!我们下期再见!拜拜!

免责声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件举报,一经查实,本站将立刻删除。

扫一扫在手机阅读、分享本文